Vadose Zone Soil Flushing for Chromium Remediation: A Laboratory Investigation to Support Field‐scale Application

Author:

Szecsody James E.,Emerson Hilary P.,Lawter Amanda R.,Resch Charles T.,Rockhold Mark L.,Mackley Rob D.,Qafoku Nikolla P.

Abstract

AbstractCr(VI) flushing from the vadose zone to the groundwater (with subsequent Cr(VI) removal in groundwater by pump‐and‐treat system) is a promising remedial technique that has recently been used at field scale. This laboratory study was conducted to provide the technical basis to design a field soil flushing strategy. The objectives were to (1) quantify the relationship between sediment Cr(VI) and Cr(III) mass and release rates and subsequent Cr(VI) leaching; (2) investigate different methodologies to maximize Cr(VI) leaching, and (3) investigate methods to minimize leaching of remaining residual Cr. Characterization of Cr‐contaminated sediments (Hanford Site, WA) exhibited Cr(VI) showed that leach rates that were correlated to different Cr surface phases. Sediments with low leachable Cr(VI) (<2 μg/g) leached Cr rapidly, so slow infiltration of water in a single pulse was sufficient to leach most Cr. In contrast, sediments with high Cr (2 to 200 μg/g) released some Cr(VI) quickly but 10 to 50% Cr(VI) slowly (tens to hundreds of hours). Efficient unsaturated leaching of these sediments required a different infiltration strategy that includes: multiple slow leach pulses with time between flushing cycles; the use of a surfactant to increase Cr leaching from low‐permeability zones, and the use of a reductant (Na‐dithionite or Ca‐polysulfide) in the final leach water was highly effective at decreasing residual Cr leaching. This study clearly demonstrated that the methodology of basing laboratory Cr flushing on parameters such as Cr release mass and rates could be used to improve the efficiency of soil flushing at field scale.

Publisher

Wiley

Subject

Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3