Risk predictions of surgical wound complications based on a machine learning algorithm: A systematic review

Author:

Zhang Hui1,Zhao Junde2,Farzan Ramyar3ORCID,Alizadeh Otaghvar Hamidreza4ORCID

Affiliation:

1. The Second Clinical Medical School Lanzhou University Lanzhou China

2. Department of Clinical Medicine, Health Science Center Lanzhou University Lanzhou China

3. Department of Plastic & Reconstructive Surgery, School of Medicine Guilan University of Medical Sciences Rasht Iran

4. Associate Professor of Plastic Surgery, Trauma and Injury Research Center Iran University of Medical Sciences Tehran Iran

Abstract

AbstractSurgical wounds may arise due to harm inflicted upon soft tissue during surgical intervention, and many complications and injuries may accompany them. These complications can lead to prolonged hospitalization and poorer clinical outcomes. Also, Machine learning (ML) is a Section of artificial intelligence (AI) that has emerged in medical care and is increasingly used for diagnosis, complications, prognosis and recurrence prediction. This study aims to investigate surgical wound risk predictions and management using a ML algorithm by R programming language analysis. The systematic review, following PRISMA guidelines, spanned electronic databases using search terms like ‘machine learning’, ‘surgical’ and ‘wound’. Inclusion criteria covered experimental studies from 1990 to the present on ML's application in surgical wound evaluation. Exclusion criteria included studies lacking full text, focusing on ML in all surgeries, neglecting wound assessment and duplications. Two authors rigorously assessed titles, abstracts and full texts, excluding reviews and guidelines. Ultimately, relevant articles were then analysed. The present study identified nine articles employing ML for surgical wound management. The analysis encompassed various surgical procedures, including Cardiothoracic, Caesarean total abdominal colectomy, Burn plastic surgery, facial plastic surgery, laparotomy, minimal invasive surgery, hernia repair and unspecified surgeries. ML was skillful in evaluating surgical site infections (SSI) in seven studies, while two extended its use to burn‐grade diagnosis and wound classification. Support Vector Machine (SVM) and Convolutional Neural Network (CNN) were the most utilized algorithms. ANN achieved a 96% accuracy in facial plastic surgery wound management. CNN demonstrated commendable accuracies in various surgeries, and SVM exhibited high accuracy in multiple surgeries and burn plastic surgery. In sum, these findings underscore ML's potential for significant improvements in postoperative management and the development of enhanced care techniques, particularly in surgical wound management.

Publisher

Wiley

Reference43 articles.

1. Surgical wound infections;Barry CL;Phys Assist Clinic,2021

2. Sandy‐HodgettsK OuseyK ConwayB et al.International Best Practice Recommendations for the Early Identification and Prevention of Surgical Wound Complications.2020.

3. Factors influencing antibiotic prophylaxis for surgical site infection prevention in general surgery: a review of the literature;Gagliardi AR;Can J Surg,2009

4. Debridement for surgical wounds;Smith F;Cochrane Database Syst Rev,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3