A series of quinazolin‐4(3H)‐one‐morpholine hybrids as anti‐lung‐cancer agents: Synthesis, molecular docking, molecular dynamics, ADME prediction and biological activity studies

Author:

Tokalı Feyzi Sinan1ORCID,Şenol Halil2ORCID,Ateşoğlu Şeyma34ORCID,Akbaş Fahri3ORCID

Affiliation:

1. Department of Material and Material Processing Technologies, Kars Vocational School Kafkas University Kars Turkey

2. Department of Pharmaceutical Chemistry, Faculty of Pharmacy Bezmialem Vakif University Istanbul Turkey

3. Department of Medical Biology, Faculty of Medicine Bezmialem Vakif University Istanbul Turkey

4. Department of Biotechnology, Institute of Health Sciences Bezmialem Vakif University Istanbul Turkey

Abstract

AbstractIn this study, we synthesized 15 novel quinazoline‐morpholinobenzylideneamino hybrid compounds from methyl anthranilate and we assessed their cytotoxicity via in vitro assays against A549 and BEAS‐2B cell lines. Molecular docking studies were conducted to evaluate the protein‐ligand interactions and inhibition mechanisms on nine different molecular targets, while molecular dynamics (MD) simulations were carried out to assess the stability of the best docked ligand–protein complexes. Additionally, ADME prediction was carried out to determine physicochemical parameters and drug likeness. According to the cytotoxicity assays, compound 1 (IC50 = 2.83 μM) was found to be the most active inhibitor against A549 cells. While the selectivity index (SI) of compound 1 is 29, the SI of the reference drugs paclitaxel and sorafenib, used in this study, are 2.40 and 4.92, respectively. Among the hybrid compounds, 1 has the best docking scores against VEGFR1 (−11.744 kcal/mol), VEGFR2 (−12.407 kcal/mol) and EGFR (−10.359 kcal/mol). During MD simulations, compound 1 consistently exhibited strong hydrogen bond interactions with the active sites of VEGFR1 and 2, and these interactions were maintained for more than 90% of the simulation time. Additionally, the RMSD and RMSF values of the ligand–protein complexes exhibited high stability at their minimum levels around 1–2 Å. In conclusion, these findings suggest that compound 1 may be a potent and selective inhibitor candidate for lung cancer treatment and inhibition of VEGFR2, especially.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3