Unveiling the factors of aesthetic preferences with explainable AI

Author:

Soydaner Derya1ORCID,Wagemans Johan1

Affiliation:

1. Department of Brain and Cognition University of Leuven (KU Leuven) Leuven Belgium

Abstract

AbstractThe allure of aesthetic appeal in images captivates our senses, yet the underlying intricacies of aesthetic preferences remain elusive. In this study, we pioneer a novel perspective by utilizing several different machine learning (ML) models that focus on aesthetic attributes known to influence preferences. Our models process these attributes as inputs to predict the aesthetic scores of images. Moreover, to delve deeper and obtain interpretable explanations regarding the factors driving aesthetic preferences, we utilize the popular Explainable AI (XAI) technique known as SHapley Additive exPlanations (SHAP). Our methodology compares the performance of various ML models, including Random Forest, XGBoost, Support Vector Regression, and Multilayer Perceptron, in accurately predicting aesthetic scores, and consistently observing results in conjunction with SHAP. We conduct experiments on three image aesthetic benchmarks, namely Aesthetics with Attributes Database (AADB), Explainable Visual Aesthetics (EVA), and Personalized image Aesthetics database with Rich Attributes (PARA), providing insights into the roles of attributes and their interactions. Finally, our study presents ML models for aesthetics research, alongside the introduction of XAI. Our aim is to shed light on the complex nature of aesthetic preferences in images through ML and to provide a deeper understanding of the attributes that influence aesthetic judgements.

Funder

European Research Council

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3