A qualitative analysis of stigmatizing language in birth admission clinical notes

Author:

Barcelona Veronica1ORCID,Scharp Danielle1ORCID,Idnay Betina R.2ORCID,Moen Hans3ORCID,Goffman Dena4,Cato Kenrick5ORCID,Topaz Maxim1ORCID

Affiliation:

1. Columbia University School of Nursing New York City New York USA

2. Department of Biomedical Informatics Columbia University New York City New York USA

3. Department of Computer Science Aalto University Espoo Finland

4. Department of Obstetrics Columbia University Irving Medical Center New York City New York USA

5. Family and Community Health University of Pennsylvania School of Nursing Philadelphia Pennsylvania USA

Abstract

AbstractThe presence of stigmatizing language in the electronic health record (EHR) has been used to measure implicit biases that underlie health inequities. The purpose of this study was to identify the presence of stigmatizing language in the clinical notes of pregnant people during the birth admission. We conducted a qualitative analysis on N = 1117 birth admission EHR notes from two urban hospitals in 2017. We identified stigmatizing language categories, such as Disapproval (39.3%), Questioning patient credibility (37.7%), Difficult patient (21.3%), Stereotyping (1.6%), and Unilateral decisions (1.6%) in 61 notes (5.4%). We also defined a new stigmatizing language category indicating Power/privilege. This was present in 37 notes (3.3%) and signaled approval of social status, upholding a hierarchy of bias. The stigmatizing language was most frequently identified in birth admission triage notes (16%) and least frequently in social work initial assessments (13.7%). We found that clinicians from various disciplines recorded stigmatizing language in the medical records of birthing people. This language was used to question birthing people's credibility and convey disapproval of decision‐making abilities for themselves or their newborns. We reported a Power/privilege language bias in the inconsistent documentation of traits considered favorable for patient outcomes (e.g., employment status). Future work on stigmatizing language may inform tailored interventions to improve perinatal outcomes for all birthing people and their families.

Funder

Gordon and Betty Moore Foundation

Publisher

Wiley

Subject

General Nursing

Reference55 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3