Paediatric sleep apnea event prediction using nasal air pressure and machine learning

Author:

Crowson Matthew G.12ORCID,Gipson Kevin S.345,Kadosh Orna Katz12,Hartnick Elizabeth6,Grealish Ellen7,Keamy Donald G.12,Kinane Thomas Bernard345,Hartnick Christopher J.12

Affiliation:

1. Department of Otolaryngology‐Head & Neck Surgery, Mass Eye & Ear Boston Massachusetts USA

2. Department of Otolaryngology‐Head & Neck Surgery Harvard Medical School Boston Massachusetts USA

3. Department of Pediatric Pulmonary Medicine Mass General Hospital for Children Boston Massachusetts USA

4. Department of Pediatrics Harvard Medical School Boston Massachusetts USA

5. Division of Sleep Medicine Harvard Medical School Boston Massachusetts USA

6. Brown University Providence Rhode Island USA

7. Massachusetts General Hospital Boston Massachusetts USA

Abstract

SummarySleep‐disordered breathing is an important health issue for children. The objective of this study was to develop a machine learning classifier model for the identification of sleep apnea events taken exclusively from nasal air pressure measurements acquired during overnight polysomnography for paediatric patients. A secondary objective of this study was to differentiate site of obstruction exclusively from hypopnea event data using the model. Computer vision classifiers were developed via transfer learning to either normal breathing while asleep, obstructive hypopnea, obstructive apnea or central apnea. A separate model was trained to identify site of obstruction as either adeno‐tonsillar or tongue base. In addition, a survey of board‐certified and board‐eligible sleep physicians was completed to compare clinician versus model classification performance of sleep events, and indicated very good performance of our model relative to human raters. The nasal air pressure sample database available for modelling comprised 417 normal, 266 obstructive hypopnea, 122 obstructive apnea and 131 central apnea events derived from 28 paediatric patients. The four‐way classifier achieved a mean prediction accuracy of 70.0% (95% confidence interval [67.1–72.9]). Clinician raters correctly identified sleep events from nasal air pressure tracings 53.8% of the time, whereas the local model was 77.5% accurate. The site of obstruction classifier achieved a mean prediction accuracy of 75.0% (95% confidence interval [68.7–81.3]). Machine learning applied to nasal air pressure tracings is feasible and may exceed the diagnostic performance of expert clinicians. Nasal air pressure tracings of obstructive hypopneas may “encode” information regarding the site of obstruction, which may only be discernable by machine learning.

Publisher

Wiley

Subject

Behavioral Neuroscience,Cognitive Neuroscience,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3