Affiliation:
1. Department of Biological, Geological, and Environmental Sciences Cleveland State University Cleveland OH 44115 USA
2. United States Department of Agriculture, Agricultural Research Service, Rangeland Resources & Systems Research Fort Collins CO 80526 USA
Abstract
Summary
Uncertainty persists within trait‐based ecology, partly because few studies assess multiple axes of functional variation and their effect on plant performance.
For 55 species from two semiarid grasslands, we quantified: (1) covariation between economic traits of leaves and absorptive roots, (2) covariation among economic traits, plant height, leaf size, and seed mass, and (3) relationships between these traits and species' abundance.
Pairs of analogous leaf and root traits were at least weakly positively correlated (e.g. specific leaf area (SLA) and specific root length (SRL)). Two pairs of such traits, N content and DMC of leaves and roots, were at least moderately correlated (r > 0.5) whether species were grouped by site, taxonomic group and growth form, or life history. Root diameter was positively correlated with seed mass for all groups of species except annuals and monocots. Species with higher leaf dry matter content (LDMC) tended to be more abundant (r = 0.63). Annuals with larger seeds were more abundant (r = 0.69).
Compared with global‐scale syntheses with many observations from mesic ecosystems, we observed stronger correlations between analogous leaf and root traits, weaker correlations between SLA and leaf N, and stronger correlations between SRL and root N. In dry grasslands, plant persistence may require coordination of above‐ and belowground traits, and dense tissues may facilitate dominance.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献