Rainforest litter invertebrates decimated by high severity burns during Australia's gigafires

Author:

Gibb Heloise1ORCID,Grubb Joshua J.1,Black Dennis1,Porch Nick2,Decker Orsolya13,McGeoch Melodie1ORCID,Deane David1,Murphy Nicholas1

Affiliation:

1. Centre for Future Landscapes La Trobe University Bundoora Victoria Australia

2. School of Life and Environmental Sciences Deakin University Burwood Victoria Australia

3. Bavarian Forest National Park Grafenau Germany

Abstract

AbstractClimate change is increasing the frequency of extreme fires. In 2019–2020, extreme fires burned 97 000 km2 of native vegetation in south‐eastern Australia, affecting many areas of rainforest, which has historically burned less frequently. One year post‐fires, we surveyed litter macroinvertebrates in 52 temperate rainforest sites. Sites had experienced increasing levels of fire severity (unburnt, medium severity and high severity). We asked how fire severity affected: (1) litter macroinvertebrate habitats; (2) the abundance of litter macroinvertebrate taxa per unit area; and (3) abundance relative to litter habitat (volumetric density). We also estimated the loss of litter macroinvertebrates across rainforests in the study region. High severity burns supported only a fifth of the litter volume and canopy cover as unburnt sites, lower soil moisture and higher herb cover. Medium burns were intermediate. Macroinvertebrate abundance declined with burn severity: high severity burns supported only 26% of the abundance in unburnt sites; medium severity burns supported 80% of that in unburnt sites. Patterns were similar for all taxa, with millipedes declining most. High severity fires resulted in up to 1.90 million fewer macroinvertebrates per hectare; 0.53 million fewer per hectare of medium burn rainforest. Across the study region, we estimate that 60 billion fewer litter macroinvertebrates persisted in temperate rainforests alone. Volumetric densities of many litter macroinvertebrate taxa in high severity burns were marginally higher than in unburnt sites, suggesting nutrients may be more available post‐fire, or that persisting individuals become concentrated in the leaf litter. For less desiccation‐tolerant groups (e.g., amphipods), density declines with increasing severity may reflect the combined impact of low soil moisture and reduced litter cover. Many taxa persisted following high severity fires, but declines were substantial, and taxa differed in their vulnerability. Longer‐term monitoring is required to understand the recovery trajectory and impacts on ecological function.

Publisher

Wiley

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Reference74 articles.

1. Insects 'Down Under'- Diversity, endemism and evolution of the Australian insect fauna: examples from select orders

2. Bates D. Maechler M. Bolker B.&Walker S.(2014)lme4: linear mixed‐effects models using eigen and S4. R Package Version 1.1‐6. Available from:http://CRAN.R‐project.org/package=lme4

3. Osmoregulation in terrestrial arthropods;Berridge M.;Chemical Zoology,2012

4. Unprecedented burn area of Australian mega forest fires

5. Threatened species conservation of invertebrates in Australia: an overview

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3