Affiliation:
1. Department of Evidence‐Based Medicine Southwest Medical University Luzhou Sichuan China
2. Department of Rheumatology and Immunology Affiliated Hospital of Southwest Medical University Luzhou Sichuan China
3. Laboratory Animal Center Southwest Medical University Luzhou Sichuan China
Abstract
AbstractObjectivesTo investigate whether machine learning, which is widely used in disease prediction and diagnosis based on demographic data and serological markers, can predict herpes occurrence in patients with systemic lupus erythematosus (SLE).MethodsA total of 286 SLE patients were included in this study, including 200 SLE patients without herpes and 86 SLE patients with herpes. SLE patients were randomly divided into a training group and a test group, and 18 demographic characteristics and serological indicators were compared between the two groups.ResultsWe selected basophil, monocyte, white blood cell, age, immunoglobulin E, SLE Disease Activity Index, complement 4, neutrophil, and immunoglobulin G as the basic features of modeling. A random forest model had the best performance, but logistic and decision tree analyses had better clinical decision‐making benefits. Random forest had a good consistency between feature importance judgment and feature selection. The 10‐fold cross‐validation showed the optimization of five model parameters.ConclusionThe random forest model may be an excellently performing model, which may help clinicians to identify SLE patients whose disease is complicated by herpes early.
Funder
Natural Science Foundation of Sichuan Province
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献