The phospho‐regulated amphiphysin/endophilin interaction is required for synaptic vesicle endocytosis

Author:

Kontaxi Christiana123ORCID,Kim Nawon123ORCID,Cousin Michael A.123ORCID

Affiliation:

1. Centre for Discovery Brain Sciences, Hugh Robson Building, George Square University of Edinburgh Edinburgh UK

2. Muir Maxwell Epilepsy Centre University of Edinburgh Edinburgh UK

3. Simons Initiative for the Developing Brain, Hugh Robson Building, George Square University of Edinburgh Edinburgh UK

Abstract

AbstractThe multidomain adaptor protein amphiphysin‐1 (Amph1) is an important coordinator of clathrin‐mediated endocytosis in non‐neuronal cells and synaptic vesicle (SV) endocytosis at central nerve terminals. Amph1 contains a lipid‐binding N‐BAR (Bin/Amphiphysin/Rvs) domain, central proline‐rich (PRD) and clathrin/AP2 (CLAP) domains, and a C‐terminal SH3 domain. Amph1 interacts with both lipids and proteins, with all of these interactions required for SV endocytosis, with the exception of the Amph1 PRD. The Amph1 PRD associates with the endocytosis protein endophilin A1, however, the role of this interaction in SV endocytosis has not been investigated. In this study, we set out to determine whether the Amph1 PRD and its interaction with endophilin A1 was essential for efficient SV endocytosis at typical small central synapses. To achieve this, domain‐specific interactions of Amph1 were validated using in vitro GST pull‐down assays, with the role of these interactions in SV endocytosis determined in molecular replacement experiments in primary neuronal culture. Using this approach, we confirmed important roles for CLAP and SH3 domain interactions of Amph1 in the control of SV endocytosis. Importantly, we identified the interaction site for endophilin A1 within the Amph1 PRD and exploited specific binding mutants to reveal a key role for this interaction in SV endocytosis. Finally, we determined that the formation of the Amph1‐endophilin A1 complex is dependent on the phosphorylation status of Amph1‐S293 within the PRD and that the phosphorylation status of this residue is essential for efficient SV regeneration. This work, therefore, reveals a key role for the dephosphorylation‐dependent Amph1‐endophilin A1 interaction in efficient SV endocytosis.image

Funder

LouLou Foundation

Simons Foundation

Publisher

Wiley

Subject

Cellular and Molecular Neuroscience,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3