Automated Estimation of Aquifer Parameters from Arbitrary‐Rate Pumping Tests in Python and MATLAB

Author:

Benson David A.1

Affiliation:

1. Hydrologic Science and Engineering Colorado School of Mines Golden CO 80401 USA

Abstract

AbstractInspired by the analysis by Mishra et al. (2012) of variable pumping rate tests using piecewise‐linear reconstructions of the pumping history, this article contains a derivation of the convolutional form of pumping tests in which the pumping history may take any possible form. The solution is very similar to the classical Theis (1935) equation but uses the Green's function for a pumped aquifer given by taking the time derivative of the well function . This eliminates one integration inside another and renders the convolution including the pumping history about as computationally demanding as calculating the well function alone, so that the convolution can be completed using handy mathematical software. It also allows nonlinear well losses, and because an easily‐computed deterministic model exists for all data points and pumping history, an objective function may include all data, so that errors are reduced in calculating any nonlinear‐well losses. In addition, data from multiple observation wells may be used simultaneously in the inversion. We provide codes in MATLAB and Python to solve for drawdown resulting from an arbitrary pumping history and compute the optimal aquifer parameters to fit the data. We find that the subtleties in parameter dependencies and constructing an appropriate objective function have a substantial effect on the interpreted parameters. Furthermore, the optimization from step‐drawdown tests is typically nonunique and strongly suggests that a Bayesian inversion should be used to fully estimate the joint probability density of the parameter vector.

Funder

National Science Foundation of Sri Lanka

Publisher

Wiley

Subject

Computers in Earth Sciences,Water Science and Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3