Use of Censored Multiple Regression to Interpret Temporal Environmental Data and Assess Remedy Progress

Author:

DiFilippo Erica,Tonkin Matt1,Huber William2

Affiliation:

1. S.S. Papadopulos & Associates, Inc. Rockville MD 20852 USA

2. Quantitative Decisions Rosemont PA 19010 USA

Abstract

Many methods to evaluate temporal trends in monitoring data focus on univariate techniques that account for changes in the response variable (e.g., concentration) by means of a single variable, namely time. When predictable site‐specific factors, such as groundwater‐surface water interactions, are associated with or may cause concentration changes, univariate methods may be insufficient for characterizing, estimating, and forecasting temporal trends. Multiple regression methods can incorporate additional explanatory variables, thereby minimizing the amount of unexplained variability that is relegated to the “error” term. However, the presence of sample results that are below laboratory reporting limits (i.e., censored) prohibits the direct application of the standard least‐squares method for multiple regression. Maximum likelihood estimation (MLE) for multiple regression analysis can enhance temporal trend analysis in the presence of censored response data and improve characterizing, estimating, and forecasting of temporal trends. Multiple regression using MLE (or censored multiple regression) was demonstrated at the U.S. Department of Energy Hanford Site where analyte concentrations in groundwater samples are negatively correlated with the stage of the nearby Columbia River. Incorporating a time‐lagged stage variable in the regression analysis of these data provides more reliable estimates of future concentrations, reducing the uncertainty in evaluating the progress of remediation toward remedial action objectives. Censored multiple regression can identify significant changes over time; project when maxima and minima of interest are likely to occur; estimate average values and their confidence limits over time periods relevant to regulatory compliance; and thereby improve the management of remedial action monitoring programs.

Publisher

Wiley

Subject

Computers in Earth Sciences,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3