Biomechanical effects of clear aligner with different shape design at extraction space area during anterior teeth retraction

Author:

Mao Bochun1,Tian Yajing2,Xiao Yujia1,Liu Jiayi1,Liu Dawei1,Li Jing1,Zhou Yanheng1ORCID

Affiliation:

1. Department of Orthodontics Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health Beijing China

2. Center of Stomatology China‐Japan Friendship Hospital Beijing China

Abstract

AbstractObjectiveThis study aimed to investigate the biomechanical effects of clear aligner (CA) with different shape designs at extraction space (CAES) area during space closing.Materials and MethodsA finite‐element method (FEM) model of mandibular dentition, periodontal ligaments, attachments, and corresponding CA was established. The connecting rod design of CAES was modelled for the control group. Eight test groups with different heights of CAES from −4 mm to +4 mm were designed. Tooth displacement tendencies were calculated. The maximum principal stress in PDLs, teeth, and CAs was analysed. Both global coordinate system and local coordinate system were also used to evaluate individual tooth movements.ResultsAcross all groups, stresses concentrated on the lingual outer surface of CAESs. For the lowered CAES groups, both the stress value and the stress distribution area at CAESs were increased. The lowered CAES groups showed reduced movement in anterior teeth and less tipping tendency of the canines.ConclusionThe shape of CAES has a biomechanical impact on anterior teeth movement and should be considered in aligner design. The results suggest that increasing the height of CAES can enhance anterior teeth retraction, while lowered CAES may facilitate controlled root movement. Changes in the shape of CAES represent a potential direction for biomechanical improvement of clear aligner in extraction cases and are worth exploring.

Funder

National Natural Science Foundation of China

Beijing Municipal Natural Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3