Biomechanics of clear aligner therapy: Assessing the influence of tooth position and flat trimline height in translational movements

Author:

Traversa Flavio1ORCID,Chavanne Philippe1,Mah James2

Affiliation:

1. Orthodontic Business Unit Institut Straumann AG Basel Switzerland

2. School of Dental Medicine University of Nevada Las Vegas Nevada USA

Abstract

AbstractObjectiveThe present clear aligner therapy (CAT) research focuses on isolating and reporting the biomechanical performance for three separate teeth, three translational movements and two flat trimlines at different heights. By identifying key patterns, the research seeks to inform the development of improved aligner designs, ultimately enhancing the effectiveness of clinical orthodontic treatments.Materials and MethodsIn an in vitro setting using the Orthodontic Force Simulator (OFS), the biomechanical response of 30 aligners was investigated on three different teeth of a straight symmetric maxillary dentition (central incisor, canine and first molar). Each tooth was tested under two flat trimline conditions (trimmed at gingival margin, TL0; extended 2.0 mm below, TL2) and for three types of translational movements (palatal translation, mesial translation and intrusion). Forces and moments were reported at the centre of resistance for each displaced tooth as well as the two neighbouring teeth, evaluating a total of 18 distinct scenarios.ResultsFindings indicate significant variability in the biomechanical responses based on tooth location in the arch, trimline height and movement performed. For palatal translations, the palatal force required to perform the movement was observed highest in molar cases, followed by canine and incisor cases, with a notable difference in the distribution of side effects, indicating a strong influence of tooth anatomy and position in the arch. Similarly, in mesial translations and intrusions molars experienced greater forces and moments than the corresponding movements applied on canines and incisors, but uniquely dispersed for each configuration tested. Regarding the shape of the aligner, TL2 consistently showed improved control over orthodontic movements compared to TL0. Neighbouring teeth frequently displayed compensatory reactions up to about half of the intensity observed on the tooth being moved, with notable variations from case to case.ConclusionsThis research supports fundamental factors impacting CAT: Characteristic patterns in the direction and intensity of forces and moments are associated with each of the three translational movements tested. Tooth anatomy and arch location significantly influence the biomechanical performance of aligners, with an observed trend for molars to display higher forces and moments over canines and incisors, but distributed differently. The height of a flat trimline, specifically TL2, shows enhanced control over orthodontic movements. Additional findings revealed a compensatory activity of neighbouring teeth, which varies based on tooth region and movement type. It potentially could influence CAT outcomes negatively and merits attention in future investigations. These results support a tailored CAT method that improves aligner design for better force application. This method needs to be used alongside, and confirmed by, clinical knowledge. Future research should extend these findings to a wider range of clinical conditions for greater applicability in the day‐to‐day orthodontic practice.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3