Combining Desulfurisation Gypsum and Polyacrylamide to Reduce Soil Salinity and Promote Buckwheat Photosynthesis

Author:

Tao Wanghai1ORCID,Zhao Xue1,Ning Songrui1,Ji Meiyue2,Wang Quanjiu1

Affiliation:

1. State Key Laboratory of Eco‐Hydraulics in Northwest Arid Region Xi'an University of Technology Xi'an PR China

2. China Certification & Inspection Group Shaanxi Co., Ltd Xi'an PR China

Abstract

ABSTRACTSoil salinisation poses a significant threat to global agricultural production and food security. China is among the countries most severely impacted by soil salinisation. To investigate the improvement technology for saline–alkali stress in buckwheat, a typical multigrain crop in northwest China, a coupling regulation study using desulfurisation gypsum and polyacrylamide (PAM) was conducted in 2019 and 2020. Desulfurisation gypsum was applied at 0, 5.5, 11, 16.5 and 22 kg·ha−1, while PAM was applied at 0, 15, 30, 45 and 60 kg·ha−1. The results demonstrated that applying 11 t·ha−1 desulfurisation gypsum and 30 kg·ha−1 PAM effectively reduces soil salinity and pH, averaging 81.79% and 6.07%, respectively. Furthermore, it did not cause soil heavy metal pollution and created the best soil environment for buckwheat growth. Among the models tested, the nonrectangular hyperbolic model was the most accurate in describing buckwheat's photosynthetic light response. The optimal treatment for achieving the best photosynthetic performance—measured by apparent quantum efficiency, maximum net photosynthetic rate, light compensation point, light saturation point, dark respiration rate, stomatal conductance, intercellular CO2 concentration, transpiration rate, leaf water use efficiency and yield—was achieved through applying 11 t·ha−1 desulfurisation gypsum and 30 kg·ha−1 PAM. Therefore, desulfurised gypsum and PAM should be applied at 11 t·ha−1 and 30 kg·ha−1, respectively, to improve buckwheat's adaptability to different light intensities while promoting its photosynthetic response in saline–alkali soils. This study provides an effective technical scheme for reducing salt and promoting the growth of crops under salinity stress, which is of great significance for improving salinity land in arid areas.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Reference36 articles.

1. Herbivory and Defensive Characteristics of Tree Species in a Lowland Tropical Forest

2. Analysis of Moisture Infiltration in Saline–Alkali Soil While Adding Desulfurization Gypsum;Gao X.;Science of Soil and Water Conservation,2022

3. He M.2015. “The Impact of Poly(Acrylamide) on Soil Physical Properties and Photosynthetic Characteristics of Plant.” Master's thesis Inner Mongolia Agricultural University.

4. Effect of Polyacrylamide integrated with other soil amendments on runoff and soil loss: Case study from northwest Ethiopia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3