3D reconstruction of the bronchial tree of the Gray short‐tailed opossum (Monodelphis domestica) in the postnatal period

Author:

Ferner Kirsten1ORCID,Mahlow Kristin1ORCID

Affiliation:

1. Museum für Naturkunde, Leibniz‐Institut für Evolutions‐ und Biodiversitätsforschung Berlin Germany

Abstract

AbstractRecent didelphid marsupials resemble the assumed mammalian ancestor and are suitable to inform on the evolution of the mammalian lung. This study uses X‐ray computed tomography (μCT) to three‐dimensionally reconstruct the bronchial tree of the marsupial Gray short‐tailed opossum (Monodelphis domestica) in order to reveal the timeline of morphogenesis during the postnatal period. The development of the bronchial tree was examined in 37 animals from embryonic day 13, during the postnatal period (neonate to 57 days) and in adults. The first appearance and the branching of lobar, segmental and sub‐segmental bronchioles in the lungs were documented. Based on the reconstructions, the generation of end‐branching airways, the median and maximum generation and the number of branches were calculated for each pulmonary lobe. At birth, the lung of M. domestica has a primitive appearance since it consists of a simple system of branching airways that end in a number of terminal air spaces, lobar bronchioles, and first segmental bronchioles are present. During the postnatal period, the volumes of the lung and bronchial tree steadily increase and development, differentiation, and expansion of the bronchial tree takes place. By 14 days, the fundamental bronchial tree consisting of lobar, segmental, and sub‐segmental bronchioles has been established. A mature bronchial tree, including respiratory bronchioles and alveolar ducts is present by day 35. The asymmetry of the right (predominately four lobes) and the left lung (predominately two lobes), as present in M. domestica, can be considered as plesiomorphic for Mammalia. In marsupials, the process of branching morphogenesis, which takes place intrauterine in the placental fetus, is shifted to the postnatal period, but follows similar patterns as described in placentals. Lung maturation in general and the branching morphogenesis in particular seems to be highly conservative within mammalian evolution.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Cell Biology,Developmental Biology,Molecular Biology,Ecology, Evolution, Behavior and Systematics,Histology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3