Cryptic sexual reproduction in an emerging Eucalyptus shoot and foliar pathogen

Author:

Pham Nam Q.1ORCID,Suzuki Hiroyuki23ORCID,Duong Tuan A.2,Wingfield Brenda D.2,Barnes Irene2ORCID,Durán Alvaro4,Wingfield Michael J.1

Affiliation:

1. Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute University of Pretoria Pretoria South Africa

2. Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute University of Pretoria Pretoria South Africa

3. Faculty of Agro‐Food Science Niigata Agro‐Food University Niigata Japan

4. Plant Health Program, Research and Development Asia Pacific Resources International Holdings Ltd Riau Indonesia

Abstract

AbstractEucalyptus scab and shoot malformation is an emerging disease and a serious threat to the global plantation forestry industry. The disease appeared in North Sumatra (Indonesia) in the early 2010s and the causal agent was recently described as a novel species, Elsinoe necatrix. Nothing is known regarding its possible origin or why it emerged rapidly to cause a serious local epidemic. To investigate its population biology, we developed 15 polymorphic microsatellite markers as well as mating‐type markers using genome sequences for two E. necatrix isolates. Isolates of the pathogen were collected from different host varieties at four locations in the Lake Toba region of North Sumatra and characterized using these markers. A high level of genotypic diversity was observed for all populations with little to no genetic differentiation between sampling areas. Discriminant analysis of principal components, genotype networks and analysis of molecular variance all showed a lack of population structure and a high level of gene flow among sampling regions. Mating‐type ratios and linkage disequilibrium analyses suggest that sexual recombination is likely to be occurring, although a sexual state has not been found for the pathogen. The results of this study highlight the fact that new genotypes of E. necatrix, probably arising from cryptic sexual recombination, will challenge efforts to manage the disease, and that breeding and selection for tolerance will require substantial host genetic diversity.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3