Aggregative movement of C4 mesophyll chloroplasts is promoted by low CO2 under high intensity blue light

Author:

Kato Y.1ORCID,Oi T.1ORCID,Taniguchi M.1ORCID

Affiliation:

1. Graduate School of Bioagricultural Sciences, Nagoya University Nagoya Japan

Abstract

Abstract C4 plants supply concentrated CO2 to bundle sheath (BS) cells, improving photosynthetic efficiency by suppressing photorespiration. Mesophyll chloroplasts in C4 plants are redistributed toward the sides of the BS cells (aggregative movement) in response to environmental stresses under light. Although this chloroplast movement is common in C4 plants, the significance and mechanisms underlying the aggregative movement remain unknown. Under environmental stresses, such as drought and salt, CO2 uptake from the atmosphere is suppressed by closing stomata to prevent water loss. We hypothesized that CO2 limitation may induce the chloroplast aggregative movement. In this study, the mesophyll chloroplast arrangement in a leaf of finger millet, an NAD‐malic enzyme type C4 plant, was examined under different CO2 concentrations and light conditions. CO2 limitation around the leaves promoted the aggregative movement, but the aggregative movement was not suppressed, even at the higher CO2 concentration than in the atmosphere, under high intensity blue light. In addition, mesophyll chloroplasts did not change their arrangement under darkness or red light. From these results, it can be concluded that CO2 limitation is not a direct inducer of the aggregative movement but would be a promoting factor of the movement under high intensity blue light.

Funder

Japan Society for the Promotion of Science

Publisher

Wiley

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3