Bilirubin impacts microglial autophagy via the Akt–mTOR signaling pathway

Author:

Li Ling123,Li Siyu123,Pan Zhifan23,Zhang Yan23,Hua Ziyu12ORCID

Affiliation:

1. Department of Neonatology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders Chongqing China

2. China International Science and Technology Cooperation Base of Child Development and Critical Disorders Chongqing China

3. Chongqing Key Laboratory of Child Infection and Immunity Chongqing China

Abstract

AbstractBilirubin encephalopathy is a severe complication of neonatal hyperbilirubinemia. With elevation of serum unconjugated bilirubin (UCB) levels, UCB crosses the blood–brain barrier and possibly leads to neurological dysfunction. Neuroinflammation is recognized as a prominent pathological feature in bilirubin encephalopathy. Recent studies have suggested that autophagy plays a crucial role in the inflammatory response. However, the potential effect of microglial autophagy in the pathogenesis of bilirubin encephalopathy remains uncertain. The in vitro findings verified that in primary cultured microglia, UCB significantly reduced the ratio of LC3B‐II to LC3B‐I and downregulated the expression of ATG5, Beclin‐1, and ATG7, while increasing the expression of p62/SQSTM1. The results showed that UCB could decrease the number of mCherry‐EGFP‐LC3 positive puncta, even when chloroquine (CQ) was applied to block the microglial autophagy flux. Mechanistically, UCB was found to upregulate the expression of TLR4 and increase the phosphorylation levels of Akt and mammalian target of rapamycin (mTOR). Promoting microglial autophagy by treatment with Rapamycin (RAPA), an mTOR inhibitor, decreased the levels of NOD‐like receptor protein 3 (NLRP3) inflammasome components and IL‐1β, rescued microglial overactivation, and improved neurological functions. These data indicated that UCB could impact microglial autophagy via the Akt–mTOR signaling pathway and synergistically promote neuroinflammatory responses. Enhancing autophagy might disrupt the assembly of NLRP3 inflammasome, attenuate UCB‐induced neuroinflammation, and improve the prognosis of model rats with bilirubin encephalopathy. In conclusion, this study implies that regulating microglial autophagy might be a promising therapeutic strategy for bilirubin encephalopathy.image

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Cellular and Molecular Neuroscience,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3