Dielectric and electrical transport properties of alkaline earth vanadate glasses

Author:

Shearer Adam1ORCID,Lanagan Michael12,Feineman Maureen3ORCID,Mauro John C.1ORCID

Affiliation:

1. Department of Materials Science and Engineering The Pennsylvania State University University Park Pennsylvania USA

2. Department of Engineering Science and Mechanics The Pennsylvania State University University Park Pennsylvania USA

3. Department of Geosciences The Pennsylvania State University University Park Pennsylvania USA

Abstract

AbstractGlasses formed from transition metal oxides have shown tailorable electrical and optical properties depending on the valence state and individual element. Vanadate glasses have received specific attention for their high conductivities as compared to most glass families. In this study, the frequency‐dependent capacitance and direct current (dc) conductivity properties of alkaline earth vanadate glasses were investigated. Glasses in the xSrO–(100 − x)V2O5 and xBaO–(100 − x)V2O5 systems, where x = 30, 40, and 50 in mol%, were prepared via melt‐quench synthesis. Capacitance measurements were used to calculate dielectric constants, dielectric loss, and alternating current (ac) conductivity for each sample. Dielectric constants varied between 10–13 and 14–16 for SrO–V2O5 and BaO–V2O5 glasses, respectively, at 1 MHz. Current measurements were made as a function of temperature and voltage for each glass sample. A strong dependence on vanadate content was noted where temperature had a less strong effect. Activation energies were calculated to describe electrical transport mechanisms. All samples showed activation energies governed by electron hopping mechanisms. Such vanadate glasses have properties suitable for applications as cathode materials for batteries, solid state electrolytes, and conductive glass paste with potential for electro‐optic effects involving nonlinear processes.

Funder

Office of Naval Research

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3