Dynamic shifts in predator diel activity patterns across landscapes and threat levels

Author:

Rees Matthew W.12ORCID,Wintle Brendan A.1ORCID,Pascoe Jack H.13ORCID,Le Pla Mark13ORCID,Birnbaum Emma K.3,Hradsky Bronwyn A.1ORCID

Affiliation:

1. Quantitative and Applied Ecology Group, School of Agriculture, Food and Ecosystem Sciences, University of Melbourne Parkville VIC Australia

2. Commonwealth Scientific and Industrial Research Organisation, Health and Biosecurity, Ecosciences Precinct Dutton Park QLD Australia

3. Conservation Ecology Centre Cape Otway VIC Australia

Abstract

Understanding the constraints that dominant predators impose on subordinate species is important for predicting ecosystem dynamics and anticipating outcomes of predator management. Subordinate predators may avoid dominant predators in time or space, making it difficult to quantify antipredator behaviours unless joint spatiotemporal analyses are used. Here, we test whether an invasive dominant predator (red fox Vulpes vulpes) alters the spatiotemporal activity of an invasive subordinate predator (feral cat Felis catus). We collated records of both species from 3667 camera‐traps deployed experimentally across two regions of south‐eastern Australia with simplified predator guilds. Foxes were poison‐baited in some landscapes within each region. We used generalised additive models to quantify changes in predator spatiotemporal activity across geographic space, vegetation types, human footprints and (artificially manipulated) gradients of dominant predator activity. Foxes and cats had similar diel activity patterns when averaged across all sites, but there was important differentiation at a finer scale: cats did not reduce their spatial activity but shifted diel patterns when localised fox activity was high. Cats were crepuscular on average. However, across dry vegetation types of both regions (where foxes were nocturnal), cats shifted to diurnal behaviour with increasing fox activity. In contrast, fox activity was relatively consistent throughout the daily cycle in the wet forest; here cats avoided dawn when fox activity was high. Changes in cat diel activity patterns may facilitate spatial coexistence between these two invasive predators, potentially shifting feral cat impacts onto different native prey. While it is well‐appreciated that predator activity varies spatially and fluctuates throughout the daily cycle,our study demonstrates that diel activity patterns also vary across space, likely mediated by both landscape‐context and fear. Dominant predator avoidance in time also appears to be spatially dynamic – a key nuance overlooked when simply comparing the average activity overlap between two species.

Publisher

Wiley

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3