Transplantation of Wnt4‐modified neural stem cells mediate M2 polarization to improve inflammatory micro‐environment of spinal cord injury

Author:

Pan Baiqi12,Wu Xiaoyu12,Zeng Xiaolin23,Chen Jiewen23,Zhang Wenwu23,Cheng Xing23,Wan Yong23,Li Xiang23ORCID

Affiliation:

1. Department of Joint Surgery, The First Affiliated Hospital Sun Yat‐sen University Guangzhou China

2. Guangdong Province Key Laboratory of Orthopaedics and Traumatology Guangzhou China

3. Department of Spine Surgery, The First Affiliated Hospital Sun Yat‐sen University Guangzhou China

Abstract

AbstractNeural stem cells (NSCs) transplantation has been considered as a potential strategy to reconnect the neural circuit after spinal cord injury (SCI) but the therapeutic effect was still unsatisfied because of the poor inflammatory micro‐environment of SCI. Previous study reported that neuroprotection and inflammatory immunomodulation were considered to be most important mechanism of NSCs transplantation. In addition, Wnt4 has been considered to be neurogenesis and anti‐inflammatory so that it would be an essential assistant agent for NSCs transplantation. Our single cells sequence indicates that macrophages are the most important contributor of inflammatory response after SCI and the interaction between macrophages and astrocytes may be the most crucial to inflammatory microenvironment of SCI. We further report the first piece of evidence to confirm the interaction between Wnt4‐modified NSCs and macrophages using NSCs‐macrophages co‐cultured system. Wnt4‐modified NSCs induce M2 polarization and inhibit M1 polarization of macrophages through suppression of TLR4/NF‐κB signal pathway; furthermore, M2 cells promote neuronal differentiation of NSCs through MAPK/JNK signal pathway. In vivo, transplantation of Wnt4‐modified NSCs improves inflammatory micro‐environment through induce M2 polarization and inhibits M1 polarization of macrophages to promote axonal regeneration and tissue repair. The current study indicated that transplantation of Wnt4‐modified NSCs mediates M2 polarization of macrophages to promote spinal cord injury repair. Our novel findings would provide more insight of SCI and help with identification of novel treatment strategy.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Publisher

Wiley

Subject

Cell Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3