Pharmacologic blockade of nicotinic receptors in the suprachiasmatic nucleus increases ovarian atresia and inhibits follicular growth

Author:

Vieyra Elizabeth12,Calderón Roberto12,Linares Rosa3,Rosas Gabriela1,Ramírez Deyra A.4,Espinoza Julieta A.1,Chaparro Andrea1,Silva Carlos‐Camilo2ORCID,Domínguez Roberto2,Morales‐Ledesma Leticia1ORCID

Affiliation:

1. Physiology of Reproduction Laboratory, Biology of Reproduction Research Unit, Facultad de Estudios Superiores Zaragoza Universidad Nacional Autónoma de México Mexico City Mexico

2. Chronobiology of Reproduction Research Lab, Biology of Reproduction Research Unit, Facultad de Estudios Superiores Zaragoza Universidad Nacional Autónoma de México Mexico City Mexico

3. Laboratorio de Endocrinología, Biology of Reproduction Research Unit, Facultad de Estudios Superiores Zaragoza Universidad Nacional Autónoma de México Mexico City Mexico

4. Facultad de Estudios Superiores Zaragoza Campus III UNAM Tlaxcala Mexico

Abstract

AbstractReproduction in all mammalian species depends on the growth and maturation of ovarian follicles, that is, folliculogenesis. Follicular development can culminate with the rupture of mature follicles and the consequent expulsion of their oocytes (ovulation) or in atresia, characterized by the arrest of development and eventual degeneration. These processes are regulated by different neuroendocrine signals arising at different hypothalamic nuclei, including the suprachiasmatic nucleus (SCN). In the later, the activation of muscarinic receptors (mAChRs) and nicotinic receptors (nAChRs) by acetylcholine is essential for the regulation of the pre‐ovulatory signals that stimulate the rupture of mature follicles. To evaluate the participation of the nAChRs in the SCN throughout the oestrous cycle in the regulation of the hypothalamic–pituitary–ovarian axis. For this purpose, 90‐day‐old adult female rats in metoestrus, dioestrus, proestrus or oestrus were microinjected into the left‐ or right‐SCN with 0.3 μL of saline solution as vehicle or with 0.225 μg of mecamylamine (Mec), a non‐selective antagonist of the nicotinic receptors, diluted in 0.3 μL of vehicle. The animals were sacrificed when they presented vaginal cornification, indicative of oestrus stage, and the effects of the unilateral pharmacological blockade of the nAChRs in the SCN on follicular development, ovulation and secretion of oestradiol and follicle‐stimulating hormone (FSH) were evaluated. The microinjection of Mec decreased the serum levels of FSH, which resulted in a lower number of growing and healthy follicles and an increase in atresia. The higher percentage of atresia in pre‐ovulatory follicles was related to a decrease in the number of ova shed and abnormalities in oestradiol secretion. We also detected asymmetric responses between the left and right treatments that depended on the stage of the oestrous cycle. The present results allow us to suggest that during all the stages of the oestrous cycle, cholinergic signals that act on the nAChRs in the SCN are pivotal to modulate the secretion of gonadotropins and hence the physiology of the ovaries. Further research is needed to determine if such signals are generated by the cholinergic neurons in the SCN or by cholinergic afferents to the SCN.

Funder

Universidad Nacional Autónoma de México

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3