Timing of reproduction underlies fitness tradeoffs for a salmonid fish

Author:

Baldock Jeffrey R.1ORCID,Al‐Chokhachy Robert K.2ORCID,Campbell Matthew R.3ORCID,Walters Annika4ORCID

Affiliation:

1. Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology and Program in Ecology, University of Wyoming Laramie WY USA

2. U.S. Geological Survey, Northern Rocky Mountain Science Center Bozeman MT USA

3. Idaho Department of Fish and Game, Eagle Fish Genetics Laboratory Eagle ID USA

4. U.S. Geological Survey, Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology and Program in Ecology, University of Wyoming Laramie WY USA

Abstract

Life history diversity is generated and maintained in part by density‐dependent fitness tradeoffs that inhibit a single trait value from reaching fixation. While central to our understanding of evolution, demonstrating density dependence in the strength of fitness tradeoffs is difficult in natural systems. The timing of reproduction is a key life history trait that determines access to breeding habitat and exposure of offspring to competitive interactions and environmental conditions. Understanding the processes underlying diversity in reproductive timing will aid efforts to increase adaptive capacity under global environmental change. Here, we used detailed field studies, genetic parentage assignment, and simulation modeling to evaluate the fitness tradeoffs associated with the timing of reproduction for Yellowstone cutthroat trout Oncorhynchus clarkii bouvieri in groundwater‐dominated tributaries to the upper Snake River, Wyoming, USA. We conducted our study across two years to understand how the strength of tradeoffs changes with population density. We found that early breeders experienced reduced reproductive success relative to later breeders due to the negative impact of nest superimposition (where later breeders construct nests overlapping those constructed previously) on embryo survival. However, as the risk of superimposition declined in the low‐density year and early breeders experienced fewer losses, reproductive success became more similar among individuals breeding at different times. Further, in the spring following the critical period for growth and survival, offspring of early breeders had experienced longer growing seasons, attained larger body sizes, and were equally abundant relative to those of later breeders, suggesting that fitness losses due to superimposition may be offset by size‐dependent competitive ability and overwinter survival. Our results illustrate a mechanism underlying diversity in the timing of reproduction for salmonids. This type of life history diversity will help to ensure the resilience and stability of salmonid populations attempting to adapt to changing local stressors associated with global climate change.

Publisher

Wiley

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3