Risk of extinction increases towards higher elevations across the world's amphibians

Author:

Guirguis Jacinta1ORCID,Goodyear Luke E. B.1,Finn Catherine1,Johnson Jack V.1,Pincheira‐Donoso Daniel1ORCID

Affiliation:

1. MacroBiodiversity Lab, School of Biological Sciences Queen's University Belfast Belfast UK

Abstract

AbstractAimLife in mountains is associated with multiple features that increase the risk of demographic collapses in populations – small geographic ranges, short breeding seasons, specialization to harsh climates – leading to the hypothesis that extinction risk is exacerbated in species inhabiting higher elevations. Here, we implement the first test of this hypothesis across the amphibian tree of life – the tetrapods with the largest proportion of montane species, and nature's most threatened animals.LocationGlobal.Time PeriodPresent.Major Taxa StudiedClass Amphibia.MethodsWe collated a dataset spanning 8042 species from across all three amphibian orders (Anura, Caudata and Gymnophiona). We preformed phylogenetic logistic regressions to test the predictions that extinction risk increases with elevation, and whether this effect is caused by factors previously hypothesised to drive high‐elevation declines, including restrictions on species' geographic ranges, variation in their life histories and the presence of infectious disease.ResultsGlobally, extinction risk increases towards higher elevations. At order‐level, this relationship holds for frogs and salamanders. Even when controlling for geographic range size, life histories and infectious disease, extinction risk increases with elevation for amphibians combined and frogs globally, and in the Americas. In contrast, whereas extinction risk is greater among high‐elevation Eurasian amphibians, this relationship is explained by larger body sizes and lower fecundity.Main ConclusionsOur analyses indicate that after considering factors previously thought to explain the increase in extinction risk towards higher elevations (e.g., geographic range size, disease), elevation remains a significant predictor of amphibian extinction risk. Given that the only available tests of this hypothesis in other tetrapods (birds and reptiles) conflict with our findings, we suggest that physiological or life‐history features of amphibians may explain this observed phenomenon.

Funder

Department for the Economy

Natural Environment Research Council

Queen's University Belfast

Publisher

Wiley

Subject

Ecology,Ecology, Evolution, Behavior and Systematics,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3