Investigating weather variables driving boxwood blight epidemics: Insights from field trials with Buxus sempervirens ‘Suffruticosa’ in northern Germany between 2006 and 2020

Author:

Khaliq Ihsanul1ORCID,Brand Thomas2,Daughtrey Margery3,Kong Ping1,Hong Chuanxue1

Affiliation:

1. Hampton Roads Agricultural Research and Extension Center, Virginia Tech Virginia Beach Virginia USA

2. Plant Protection Office, Chamber of Agriculture in Lower Saxony Oldenburg Germany

3. Long Island Horticultural Research and Extension Center Cornell University Riverhead New York USA

Abstract

AbstractBoxwood blight is a highly invasive disease, but studies on host–pathogen–environment interactions are rare because the initial research emphasis has been on developing resistant cultivars and chemical control of the disease. We used generalized additive models to investigate weather variables driving boxwood blight epidemics in field trials conducted between 2006 and 2020. Briefly, three or four replicate rows with 10 boxwood plants per row were planted in 0.75 m2 plots. Plants were artificially inoculated in 2006, while those in subsequent years were naturally infected with inoculum left over from previous trials. Disease severity was assessed by estimating the percentage of leaves blighted, including fallen leaves. There was a significant positive main effect of mean rainfall per rainy day, daily minimum temperatures and daily minimum relative humidity on disease severity observed over individual field trial periods. There was a significant negative interaction effect of mean rainfall per rainy day and daily maximum wind speed, and daily minimum relative humidity and daily minimum temperature on disease severity. Higher disease severity was associated with higher mean rainfall per rainy day and lower daily maximum wind speed. Likewise, an increase in daily minimum relative humidity at lower daily minimum temperatures was associated with a greater increase in disease severity than at higher temperatures, suggesting that higher temperatures resulted in lower humidity that led, in turn, to less disease severity. The implications of our findings for forecasting models and conservation of boxwood are discussed.

Funder

National Institute of Food and Agriculture

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3