When patches grow themselves: from analogy to autocatalytic processes, the relevance of ecological nucleation for restoration practices

Author:

Michaels Theo K.1,Eppinga Maarten B.2,Bever James D.34

Affiliation:

1. Center for Resilience in Agricultural Working Landscapes University of Nebraska‐Lincoln Lincoln NE 68583 U.S.A.

2. Department of Geography University of Zurich Zurich 8057 Switzerland

3. Department of Ecology and Evolutionary Biology University of Kansas Lawrence KS 66045 U.S.A.

4. Kansas Biological Survey and Center for Ecological Research University of Kansas Lawrence KS 66045 U.S.A.

Abstract

Choosing restoration strategies may depend on ecosystem's stability properties. When degraded ecosystems do not self‐perpetuate, natural regeneration can lead to system recovery, and restoration interventions are often designed to accelerate the natural regeneration process. However, when degraded systems self‐perpetuate, reestablishing functional ecosystems depends on overcoming resistance thresholds that impede recovery. In both scenarios, concentrating restoration efforts in patches of the desired state may enhance ecosystem recovery. Introducing patches of a desired state has been motivated by two frameworks: autocatalytic nucleation and the analogy to nucleation. When restoration depends on overcoming resistance thresholds, autocatalytic nucleation lowers restoration barriers by initiating a local positive feedback mechanism that is only successful when desired patches are introduced above a critical patch size. In contrast, the analogy to nucleation accelerates natural regeneration whereby desired patches interact with landscape scale factors often through directed dispersal. We compare nucleation frameworks, and discuss their applications for restoration practices.

Funder

National Science Foundation

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3