Conditioned media of deer antler stem cells accelerate regeneration of alveolar bone defects in rats

Author:

Guo Qianqian1ORCID,Zheng Junjun2,Lin Hongbing3,Han Zhongming4,Wang Zhen1,Ren Jing1,Zhai Jingjie5,Zhao Haiping6,Du Rui4,Li Chunyi1ORCID

Affiliation:

1. Institute of Antler Science and Product Technology, Changchun Sci‐Tech University Changchun Jilin China

2. Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences Changchun Jilin China

3. Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology Jilin University Changchun Jilin China

4. Jilin Agricultural University, College of Chinese Medicinal Materials Changchun Jilin 130118 China

5. Department of Oral Implantology Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Hospital of Stomatology, Jilin University Changchun Jilin China

6. Qingdao Agricultural University, College of Animal Science and Technology Qingdao Shandong China

Abstract

AbstractThe destruction of periodontal alveolar bone (AB) caused by periodontitis is regarded as one of the major reasons for tooth loss. The inhibition of bone resorption and regeneration of lost AB are the desirable outcomes in clinical practice but remain in challenge. The use of mesenchymal stem cells (MSCs) is one current approach for achieving true restoration of AB defects (ABD). Antler stem cells (AnSC) are capable of renewing a huge mammalian bony appendage, the deer antler, suggesting an unparalleled potential for bone regeneration. Herein, we investigated the effectiveness of deer AnSCs conditioned medium (CM, AnSC‐CM) for repair of surgically‐created ABD using a rat model and sought to define the underlying mechanisms. The results showed that AnSC‐CM effectively induced regeneration of AB tissue; the outcome was significantly better than human bone marrow mesenchymal stem cell conditioned medium (hBMSC‐CM). AnSC‐CM treatment upregulated osteogenic factors and downregulated osteoclastic differentiation factors; stimulated proliferation, migration and differentiation of resident MSCs toward osteogenic lineage cells; modulated macrophage polarization toward the M2 phenotype and suppressed osteoclastogenesis. That AnSC‐CM resulted in better outcomes than hBMSC‐CM in treating ABD was attributed to the cell compatibility as both AnSCs and AB tissue are neural crest‐derived. In conclusion, the effects of AnSC‐CM on AB tissue regeneration were achieved through both promotion of osteogenesis and inhibition of osteoclastogenesis. We believe that AnSC‐CM is a candidate for effective treatment of ABD in dental clinical practice but will require investment in further development.

Publisher

Wiley

Subject

Cell Biology,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3