Restored oyster reefs and living shorelines can augment predator trophic dynamics

Author:

Loch Jennifer M. H.1ORCID,Cook Geoffrey S.1

Affiliation:

1. Department of Biology University of Central Florida 4000 Central Florida Boulevard Orlando FL 32816 U.S.A.

Abstract

Coastal habitat loss has led to declines in many higher trophic level predators. These declines can be mitigated through habitat restoration, which putatively enhances predator populations and trophic dynamics by creating foraging opportunities in reestablished habitat, but this lacks empirical support. Here, we assess the prediction restored coastal habitat supports sportfish feeding relationships similar to natural habitat, at restored oyster reefs (Crassostrea virginica) and living shoreline habitats in Florida, U.S.A. Stable isotopes and gut contents were analyzed from young sportfish (i.e. predatory fish targeted by anglers) collected at control and restored sites for up to 3 years. The influence of habitat features, predator size, and prey availability on carbon and nitrogen isotope values were examined using a model species (mangrove/gray snapper [Lutjanus griseus]). In summary, sportfish species had distinct isotopic values, consuming similar prey but in different proportions between habitats. Prey abundance and richness, and reef height were influential predictors of L. griseus stable isotope values, with restored reefs contributing to their diet more than controls according to Bayesian mixing models. The trophic niche area of L. griseus and their predominant prey achieved trophic equivalence between restored and natural oyster reefs within 1 year following restoration. Stabilized living shorelines attained trophic equivalency to natural shorelines, but may take longer to accrue prey for some species. These findings generate fundamental ecological knowledge and actionable science, including targets, timelines, and indicator species, that natural resource managers and restoration practitioners can use to assess trophic structure and success of coastal habitat restoration.

Funder

National Science Foundation

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3