Wasserstein distance bounds on the normal approximation of empirical autocovariances and cross‐covariances under non‐stationarity and stationarity

Author:

Anastasiou Andreas1,Kley Tobias2ORCID

Affiliation:

1. Department of Mathematics and Statistics University of Cyprus Nicosia Cyprus

2. Institute for Mathematical Stochastics Georg‐August‐University of Göttingen Göttingen Germany

Abstract

The autocovariance and cross‐covariance functions naturally appear in many time series procedures (e.g. autoregression or prediction). Under assumptions, empirical versions of the autocovariance and cross‐covariance are asymptotically normal with covariance structure depending on the second‐ and fourth‐order spectra. Under non‐restrictive assumptions, we derive a bound for the Wasserstein distance of the finite‐sample distribution of the estimator of the autocovariance and cross‐covariance to the Gaussian limit. An error of approximation to the second‐order moments of the estimator and an ‐dependent approximation are the key ingredients to obtain the bound. As a worked example, we discuss how to compute the bound for causal autoregressive processes of order 1 with different distributions for the innovations. To assess our result, we compare our bound to Wasserstein distances obtained via simulation.

Publisher

Wiley

Subject

Applied Mathematics,Statistics, Probability and Uncertainty,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3