Local Whittle estimation with (quasi‐)analytic wavelets

Author:

Achard Sophie1,Gannaz Irène2ORCID

Affiliation:

1. Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LJK Grenoble France

2. Univ. Grenoble Alpes, CNRS, Grenoble INP, G‐SCOP Grenoble France

Abstract

In the general setting of long‐memory multivariate time series, the long‐memory characteristics are defined by two components. The long‐memory parameters describe the autocorrelation of each time series. And the long‐run covariance measures the coupling between time series, with general phase parameters. It is of interest to estimate the long‐memory, long‐run covariance and general phase parameters of time series generated by this wide class of models although they are not necessarily Gaussian nor stationary. This estimation is thus not directly possible using real wavelets decomposition or Fourier analysis. Our purpose is to define an inference approach based on a representation using quasi‐analytic wavelets. We first show that the covariance of the wavelet coefficients provides an adequate estimator of the covariance structure including the phase term. Consistent estimators based on a local Whittle approximation are then proposed. Simulations highlight a satisfactory behavior of the estimation on finite samples on multivariate fractional Brownian motions. An application on a real neuroscience dataset is presented, where long‐memory and brain connectivity are inferred.

Publisher

Wiley

Subject

Applied Mathematics,Statistics, Probability and Uncertainty,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3