Affiliation:
1. Department of Economics Macquarie University Sydney Australia
2. Lingnan College Sun Yat‐sen University Guangzhou China
3. Faculty of Business Administration University of Macau Macau China
Abstract
This article introduces a discrete‐time fractional stochastic volatility model (FSV) based on fractional Gaussian noise. The new model includes the standard stochastic volatility model as a special case and has the same limit as the fractional integrated stochastic volatility (FISV) model, which is the continuous‐time fractional Ornstein–Uhlenbeck process. A simulated maximum likelihood method, which maximizes the time‐domain log‐likelihood function calculated by the importance sampling technique, and a frequency‐domain quasi maximum likelihood method (or quasi Whittle) are employed to estimate the model parameters. Simulation studies suggest that, while both estimation methods can accurately estimate the model, the simulated maximum likelihood method outperforms the quasi Whittle method. As an illustration, we fit the FSV and FISV models with the proposed estimation techniques to the S&P 500 composite index over a sample period spanning 45 years.
Funder
National Natural Science Foundation of China
Lee Foundation
Australian Research Council