Transformed‐Linear Models for Time Series Extremes

Author:

Mhatre Nehali1,Cooley Daniel1ORCID

Affiliation:

1. Statistics Department Colorado State University Ft. Collins CO USA

Abstract

To capture the dependence in the upper tail of a time series, we develop non‐negative regularly varying time series models that are constructed similarly to classical non‐extreme ARMA models. Rather than fully characterizing tail dependence of the time series, we define the concept of weak tail stationarity which allows us to describe a regularly varying time series via a measure of pairwise extremal dependencies, the tail pairwise dependence function (TPDF). We state consistency requirements among the finite‐dimensional collections of the elements of a regularly varying time series and show that the TPDF's value does not depend on the dimension of the random vector being considered. So that our models take non‐negative values, we use transformed‐linear operations. We show existence and stationarity of these models, and develop their properties such as the model TPDFs. We fit models to hourly windspeed and daily fire weather index data, and we find that the fitted transformed‐linear models produce better estimates of upper tail quantities than a traditional ARMA model, classical linear regularly varying models, a max‐ARMA model, and a Markov model.

Funder

National Science Foundation

Publisher

Wiley

Reference28 articles.

1. BellB HersbachH BerrisfordP DahlgrenP HorányiA Muñoz SabaterJ NicolasJ RaduR SchepersD SimmonsA SociC Thépaut J.‐N.2020.Era5 hourly data on single levels from 1950 to 1978 (preliminary version). Accessed on 1 December 2020.

2. A Hierarchical Max-Infinitely Divisible Spatial Model for Extreme Precipitation

3. Time Series: Theory and Methods

4. Introduction to Time Series and Forecasting

5. An Introduction to Statistical Modeling of Extreme Values

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3