On vector linear double autoregression

Author:

Lin Yuchang1,Zhu Qianqian1ORCID

Affiliation:

1. Shanghai University of Finance and Economics China

Abstract

This article proposes a vector linear double autoregressive (VLDAR) model with the constant conditional correlation specification, which can capture the co‐movement of multiple series and jointly model their conditional means and volatilities. The strict stationarity of the new model is discussed, and a self‐weighted Gaussian quasi‐maximum likelihood estimator (SQMLE) is proposed for estimation. To reduce the computational cost, especially when the series dimension is large, a block coordinate descent (BCD) algorithm is provided to calculate the SQMLE. Moreover, a Bayesian information criterion is introduced for order selection, and a multi‐variate mixed portmanteau test is constructed for checking the adequacy of fitted models. All asymptotic properties for estimation, model selection, and portmanteau test are established without any moment restrictions imposed on the data process, which makes the new model and its inference tools applicable for heavy‐tailed data. Simulation experiments are conducted to evaluate the finite‐sample performance of the proposed methodology, and an empirical example on analyzing S&P 500 sector indices is presented to illustrate the usefulness of the new model in contrast with competitors.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Applied Mathematics,Statistics, Probability and Uncertainty,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3