Neural Impostor: Editing Neural Radiance Fields with Explicit Shape Manipulation

Author:

Liu Ruiyang12ORCID,Xiang Jinxu1ORCID,Zhao Bowen1ORCID,Zhang Ran1ORCID,Yu Jingyi2,Zheng Changxi1ORCID

Affiliation:

1. Tencent Pixel Lab

2. ShanghaiTech University

Abstract

AbstractNeural Radiance Fields (NeRF) have significantly advanced the generation of highly realistic and expressive 3D scenes. However, the task of editing NeRF, particularly in terms of geometry modification, poses a significant challenge. This issue has obstructed NeRF's wider adoption across various applications. To tackle the problem of efficiently editing neural implicit fields, we introduce Neural Impostor, a hybrid representation incorporating an explicit tetrahedral mesh alongside a multigrid implicit field designated for each tetrahedron within the explicit mesh. Our framework bridges the explicit shape manipulation and the geometric editing of implicit fields by utilizing multigrid barycentric coordinate encoding, thus offering a pragmatic solution to deform, composite, and generate neural implicit fields while maintaining a complex volumetric appearance. Furthermore, we propose a comprehensive pipeline for editing neural implicit fields based on a set of explicit geometric editing operations. We show the robustness and adaptability of our system through diverse examples and experiments, including the editing of both synthetic objects and real captured data. Finally, we demonstrate the authoring process of a hybrid synthetic‐captured object utilizing a variety of editing operations, underlining the transformative potential of Neural Impostor in the field of 3D content creation and manipulation.

Publisher

Wiley

Subject

Computer Graphics and Computer-Aided Design

Reference52 articles.

1. Bounding proxies for shape approximation;Calderon S.;ACM Transactions on Graphics (Proc. SIGGRAPH 2017),2017

2. ChenZ. FunkhouserT. A. HedmanP. TagliasacchiA.: Mobilenerf: Exploiting the polygon rasterization pipeline for efficient neural field rendering on mobile architectures.ArXiv abs/2208.00277(2022). 2 3

3. ChongBaoandBangbangYang JunyiZ. HujunB. YindaZ. ZhaopengC. GuofengZ.: Neumesh: Learning disentangled neural mesh-based implicit field for geometry and texture editing. InEuropean Conference on Computer Vision (ECCV)(2022). 2 3

4. ChanE. R. LinC. Z. ChanM. A. NaganoK. PanB. MelloS. D. GalloO. GuibasL. TremblayJ. KhamisS. KarrasT. WetzsteinG.: Efficient geometry-aware 3D generative adversarial networks. InarXiv(2021). 3

5. ChenJ. LyuJ. WangY.-X.: Neuraleditor: Editing neural radiance fields via manipulating point clouds.ArXiv abs/2305.03049(2023). 2 3

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3