Interactive Locomotion Style Control for a Human Character based on Gait Cycle Features

Author:

Kim Chaelin1ORCID,Eom Haekwang2ORCID,Yoo Jung Eun1ORCID,Choi Soojin1ORCID,Noh Junyong1ORCID

Affiliation:

1. KAIST, Visual Media Lab Daejeon South Korea

2. Wētā Digital Ltd Wellington New Zealand

Abstract

AbstractThis article introduces a data‐driven locomotion style controller for full‐body human characters using gait cycle features. Based on gait analysis, we define a set of gait features that can represent various locomotion styles as spatio‐temporal patterns within a single gait cycle. We compute the gait features for every single gait cycle in motion capture data and use them to search for the desired motion. Our real‐time style controller provides users with visual feedback for the changing inputs, exploiting the Motion Matching algorithm. We also provide a graphical controller interface that visualizes our style representation to enable intuitive control for users. We show that the proposed method is capable of retrieving appropriate locomotions for various gait cycle features, from simple walking motions to single‐foot motions such as hopping and dragging. To validate the effectiveness of our method, we conducted a user study that compares the usability and performance of our system with those of an existing footstep animation tool. The results show that our method is preferred over the baseline method for intuitive control and fast visual feedback.

Publisher

Wiley

Subject

Computer Graphics and Computer-Aided Design

Reference44 articles.

1. [Ado] Adobe Systems:Mixamo.https://www.mixamo.com/#/.

2. [AF02] ArikanO. ForsythD. A.:Interactive motion generation from examples. InProceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques(New York NY USA 2002) SIGGRAPH '02 Association for Computing Machinery pp.483–490.https://doi.org/10.1145/566570.566606.

3. [Aut] Autodesk:3d studio max.https://www.autodesk.com/products/3ds‐max/overview.

4. Unpaired motion style transfer from video to animation

5. Motion matching‐the road to next gen animation;Büttner M.;Proceedings of Nucl.ai,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3