Intrinsic microbial temperature sensitivity and soil organic carbon decomposition in response to climate change

Author:

Li Sen123ORCID,Delgado‐Baquerizo Manuel4ORCID,Ding Jixian1,Hu Han12,Huang Weigen12,Sun Yishen12,Ni Haowei12,Kuang Yanyun12,Yuan Mengting Maggie5ORCID,Zhou Jizhong6ORCID,Zhang Jiabao1,Liang Yuting123ORCID

Affiliation:

1. State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science Chinese Academy of Sciences Nanjing China

2. University of Chinese Academy of Sciences Beijing China

3. University of Chinese Academy of Sciences Nanjing China

4. Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS) CSIC Sevilla Spain

5. Department of Environmental Science, Policy and Management University of California Berkeley California USA

6. School of Biological Sciences University of Oklahoma Norman Oklahoma USA

Abstract

AbstractSoil microbes are essential for regulating carbon stocks under climate change. However, the uncertainty surrounding how microbial temperature responses control carbon losses under warming conditions highlights a significant gap in our climate change models. To address this issue, we conducted a fine‐scale analysis of soil organic carbon composition under different temperature gradients and characterized the corresponding microbial growth and physiology across various paddy soils spanning 4000 km in China. Our results showed that warming altered the composition of organic matter, resulting in a reduction in carbohydrates of approximately 0.026% to 0.030% from humid subtropical regions to humid continental regions. These changes were attributed to a decrease in the proportion of cold‐preferring bacteria, leading to significant soil carbon losses. Our findings suggest that intrinsic microbial temperature sensitivity plays a crucial role in determining the rate of soil organic carbon decomposition, providing insights into the temperature limitations faced by microbial activities and their impact on soil carbon‐climate feedback.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3