Influence of nest box design on internal microclimate: Comparisons of plastic prototypes

Author:

Callan Michael N.12ORCID,Johnson Alexander3ORCID,Watson David M.14ORCID

Affiliation:

1. School of Agriculture, Environmental and Veterinary Sciences Charles Sturt University Albury New South Wales Australia

2. Habitat Innovation & Management Wollongong New South Wales Australia

3. School of Engineering Charles Sturt University Albury New South Wales Australia

4. Gulbali Institute Charles Sturt University Albury New South Wales Australia

Abstract

AbstractHollow‐dependent fauna are declining worldwide, due primarily to the widespread clearing of hollow‐bearing trees. Artificial cavities such as timber and plywood boxes are commonly used to increase hollow availability, yet there is increasing evidence that they are poor facsimiles of natural cavities, characterized by lower insulative properties and a shorter field life. We evaluated whether plastic materials could create a nest box with a stable thermal profile that more closely resembles the complex shapes and textures of natural tree hollows while containing fewer mechanical joins that represent potential failure points when installed. We developed three sets of prototype nest boxes comprising various combinations of plastic density (10%, 25% and 50%), insulation (single vs. double wall with or without sawdust between them), nesting chamber (with or without timber inserts) and bedding (with or without decomposed heartwood) and compared their thermal performance in a temperature‐controlled laboratory to compare internal temperature and relative humidity. We found double‐walled plastic nest box with an internal timber‐lined chamber was best able to buffer ambient temperature fluctuations, consistently recording internal temperatures of 6+°C below maximum ambient temperature, maintaining high levels of relative humidity (76%–92%) when furnished with decomposed timber heartwood. This design also performed better during a simulated hot day; internal temperatures exhibiting twice the lag time of single‐walled designs, noting that plastic density had little influence on internal conditions. While the recruitment and protection of hollow‐bearing trees must be a priority, this work shows significant potential in improving the design and functionality of artificial hollows that are critical to the conservation of hollow‐dependent species.

Funder

Charles Sturt University

Publisher

Wiley

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3