Asynchronous neural maturation predicts transition to psychosis

Author:

Iftimovici Anton123ORCID,Bourgin Julie4,Houenou Josselin15,Gay Olivier2,Grigis Antoine1,Victor Julie1,Chaumette Boris23,Krebs Marie‐Odile23,Duchesnay Edouard1ORCID,

Affiliation:

1. NeuroSpin, CEA Université Paris‐Saclay Gif‐sur Yvette France

2. Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team “Pathophysiology of Psychiatric Disorders”, GDR 3557‐Institut de Psychiatrie Paris France

3. GHU Paris Psychiatrie et Neurosciences, Pôle hospitalo‐universitaire d'évaluation, prévention, et innovation thérapeutique (PEPIT) Paris France

4. GHNE – Site de Orsay. Domaine du Grand Mesnil Bures‐sur‐Yvette France

5. APHP, CHU Mondor, DMU Impact, INSERM U955 Team 15 “Neuropsychiatrie Translationnelle”, IMRB Créteil France

Abstract

AimNeuroimaging‐based machine‐learning predictions of psychosis onset rely on the hypothesis that structural brain anomalies may reflect the underlying pathophysiology. Yet, current predictors remain difficult to interpret in light of brain structure. Here, we combined an advanced interpretable supervised algorithm and a model of neuroanatomical age to identify the level of brain maturation of the regions most predictive of psychosis.MethodsWe used the voxel‐based morphometry of a healthy control dataset (N = 2024) and a prospective longitudinal UHR cohort (N = 82), of which 27 developed psychosis after one year. In UHR, psychosis was predicted at one year using Elastic‐Net‐Total‐Variation (Enet‐TV) penalties within a five‐fold cross‐validation, providing an interpretable map of distinct predictive regions. Using both the whole brain and each predictive region separately, a brain age predictor was then built and validated in 1605 controls, externally tested in 419 controls from an independent cohort, and applied in UHR. Brain age gaps were computed as the difference between chronological and predicted age, providing a proxy of whole‐brain and regional brain maturation.ResultsPsychosis prediction was performant with 80 ± 4% of area‐under‐curve and 69 ± 5% of balanced accuracy (P < 0.001), and mainly leveraged volumetric increases in the ventromedial prefrontal cortex and decreases in the left precentral gyrus and the right orbitofrontal cortex. These regions were predicted to have delayed and accelerated maturational patterns, respectively.ConclusionBy combining an interpretable supervised model of conversion to psychosis with a brain age predictor, we showed that inter‐regional asynchronous brain maturation underlines the predictive signature of psychosis.

Funder

Agence Nationale de la Recherche

Horizon 2020 Framework Programme

Fondation Bettencourt Schueller

Fondation pour la Recherche Médicale

Ministère des Affaires Sociales et de la Santé

Publisher

Wiley

Subject

Psychiatry and Mental health,Neurology (clinical),Neurology,General Medicine,General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Resting-state functional connectivity correlates of brain structural aging in schizophrenia;European Archives of Psychiatry and Clinical Neuroscience;2024-06-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3