Phase purity and evolution in sol–gel derived single component and multicomponent rare‐earth disilicates

Author:

Salanova Alejandro1ORCID,Opila Elizabeth J.1ORCID,Ihlefeld Jon F.12ORCID

Affiliation:

1. Department of Materials Science and Engineering University of Virginia Charlottesville Virginia USA

2. Charles L. Brown Department of Electrical and Computer Engineering University of Virginia Charlottesville Virginia USA

Abstract

AbstractRare‐earth disilicates are a focus of study for use as environmental barrier coatings in gas‐turbine engines. These coatings require thermomechanical and thermochemical stability at elevated temperatures and properties can be tailored through the use of multicomponent rare‐earth disilicates. Producing rare‐earth disilicates via sol–gel is documented in literature, but there are differing procedures with varying phase purities. This work establishes trends that dictate the effects of water content, pH, and heat treatment conditions that determine the final phase purity of Yb, Er, Lu, Sc, and Y disilicate powders made via sol–gel. The phase(s) of the powders were identified and quantified using X‐ray diffraction (XRD) to extract weight fractions. In situ XRD during heating from room temperature to 1200°C was used to observe the crystallization and phase evolution of the sol–gel‐based powders, allowing for the identification of a rarely reported low temperature triclinic phase in ytterbium‐, erbium‐, and lutetium‐based disilicate sol–gels that forms prior to transformation into a monoclinic phase. Ex situ XRD allowed for the phase identification of sol–gels processed at 1400°C. These experiments demonstrated that phase‐pure disilicates could be formed under conditions with no intentional water additions, a target pH of 2, and long heat treatment times at high temperatures (e.g., 1400°C). These conditions remain valid for not only single‐cation rare‐earth disilicates of Yb, Er, Lu, Sc, and Y but also a multicomponent disilicate containing equimolar concentrations of all of these cations.

Funder

National Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3