Characterizing stress development and cracking of ceramic particulate coatings during drying

Author:

Moorhead Annie1ORCID,Francis Lorraine F.1ORCID

Affiliation:

1. Department of Chemical Engineering and Materials Science University of Minnesota Minneapolis Minnesota USA

Abstract

AbstractDuring drying, liquid‐applied particulate coatings develop stress and are consequently prone to stress‐induced defects, such as cracking, curling, and delamination. In this work, the stress development and cracking of coatings, prepared from aqueous silica and zinc oxide particle suspensions, were characterized using cantilever beam deflection with simultaneous imaging of the coating surface. Drying uniformity was improved and lateral or edge‐in drying was discouraged by using thin silicone walls around the perimeter of the cantilever. Coatings prepared from larger monodisperse silica particles (D50 ∼ 0.9 µm) dried uniformly but had a high critical cracking thickness (>150 µm) that prevented simultaneous study of stress development and cracking. Coatings prepared from smaller silica particles (D50 ∼ 0.3 µm) cracked readily at low thicknesses but exhibited edge‐in drying that complicated the stress measurement data. This drying nonuniformity was connected to the potential for these small particles to accumulate at the coating surface during drying. Hence, the selection of particle size and density was critical to drying uniformity when characterizing stress development and cracking. Coatings prepared from suspensions of zinc oxide particles (D50 ∼ 0.4 µm) were well‐suited for these studies, with uniform drying stress peaking at ∼1 MPa. Characteristic features in the stress development data above and below the critical cracking thickness (53 µm) were identified, demonstrating that cantilever beam deflection is a useful tool for studying the effectiveness of crack mitigation methods and the fundamentals of coating fracture during drying.

Funder

Materials Research Science and Engineering Center, Harvard University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3