Fabrication of vanadium telluride anchored on carbon nanotubes nanocomposite for overall water splitting

Author:

Bano Nigarish1,Manzoor Sumaira1,Sami Abdus2,Shah Syed Imran Abbas1,Junaid Ali1,Rehman Muhammad Yousaf Ur1,Alshgari Razan A.3,Ehsan Muhammad Fahad4,Ashiq Muhammad Naeem1ORCID

Affiliation:

1. Institute of Chemical Sciences Bahauddin Zakariya University Multan Pakistan

2. Centre of Excellence in Solid State Physics University of Punjab Lahore Pakistan

3. Department of Chemistry College of Science King Saud University Riyadh Saudi Arabia

4. Department of Civil and Environmental Engineering Northeastern University Boston Massachusetts USA

Abstract

AbstractElectrocatalytic water splitting is an essential hydrogen production method for resolving present energy shortage and progress toward more efficient technologies. For this purpose, a versatile and cheap electrocatalysts are the main challenge along the way. In this report, we synthesized vanadium telluride and carbon nanotube (VTe–CNT)‐based nanocomposite via facile hydrothermal route. The VTe–CNTs are characterized by X‐ray diffraction analysis, scanning electron microscopy, energy‐dispersive spectroscopy, Fourier transform infrared spectroscopy, and Brunauer–Emmett–Teller. These characterizations depict nanosphere structures, morphology, and high surface area that maintains high porosity, which are essential for inclusive water‐splitting phenomena in 1.0 M solution of KOH. Additionally, the electrochemical performance of VTe–CNTs has shown best O2 evolution reactions activity with of onset potential of 1.42 V versus reversible hydrogen electrode and required 10 mA/cm2 of current density at 278 mV overpotential, which is excellent among other electrocatalysts, VTe (342 mV@10 mA/cm−2) and CNTs (365 mV@10mA/cm−2). Moreover, VTe–CNT exhibits remarkable stability for almost 20 h. It also requires a low onset potential of 0.05 V with a small Tafel slope of 47 mV/dec for H2 evolution reactions. Hence, this research might facilitate the easy transportation of electrons and open up the new era, serving as an excellent replacement for noble metal–derived materials.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3