Changes in soil organic carbon and microbial community in saline soil following different forms of straw incorporation

Author:

Fan Ting1,Zhang Yulin12ORCID,Hu Kexin1,Xu Shiqi1,Zhang Afeng1,Xue Shaoqi1,Han Jiale1,Wang Xudong12ORCID

Affiliation:

1. College of Resources and Environment Northwest A&F University Yangling China

2. Key Laboratory of Plant Nutrition and Agri‐environment in Northwest China, Ministry of Agriculture Yangling China

Abstract

AbstractStraw has been commonly incorporated into soil to increase soil organic carbon (SOC) content. However, the response and mechanism of organic carbon transformation following the addition of different forms of straw to saline soil to have not been fully evaluated. Thus, in our study, chopped wheat straw, granular wheat straw and wheat straw biochar were used as exogenous organic amendments. The carbon‐to‐nitrogen ratio of each form of straw was adjusted to 25:1. Under the same amount of carbon input, the three forms of straw were added to saline soil for a one‐year incubation experiment. The research focused on studying the changes in SOC transformation, enzyme activity, and microbial community structure. At the end of incubation, both granular and biochar straw treatments had significantly increased SOC relative to the unamended control, with extent of SOC increase greater in the biochar straw treatment. The biochar straw treatment also had significantly higher dissolved organic carbon than the other treatments at end of the incubation. The enzyme activity of β‐cellobiohyrolase (CBH) was the highest in the granular straw treatment, which was increased by 71.9% compared with the chopped straw treatment (p < 0.05). The cumulative carbon mineralization amount (Cum C) in the granular straw treatment was the highest, which was increased by 757.4% and 21.3% compared with the biochar straw and chopped straw treatments, respectively (p < 0.05). The Mantel test analysis further revealed significant correlations between soil bacterial community and SOC content in soils treated with different straw incorporation forms, as well as between fungal community and extracellular enzyme activities. We assumed that a possible reason for the high SOC mineralization amount in the granular straw treatment was changing the structure of the Bacteroidota in the bacterial phylum and Blastocladiomycota in the fungal phylum. Based on these findings, it is believed that adding biochar can increase the SOC content, but its utilization by microorganisms is limited. However, applying granular straw will not have a negative impact on its use as a microbial carbon source, thereby promoting carbon transformation. Therefore, in future research aimed at enhancing soil fertility in saline soil regions, the adoption of granular straw as an agricultural practice is recommended and should be promoted.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3