Determination of nuclear magnetic resonance T2 cutoff in remoulded loess by the freezing point

Author:

Liu Jialiang12ORCID,Xu Qiang1,Li Pinliang1,Pu Chuanhao1,Zhao Kuanyao3,Peng Dalei1,Lei Mingyu2

Affiliation:

1. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Chengdu University of Technology Cheng du China

2. China Academy of Railway Sciences Co., Ltd Beijing China

3. College of Architecture and Civil Engineering Huanghuai University Zhumadian China

Abstract

AbstractProton nuclear magnetic resonance (NMR) is widely applied to characterize the microscopic properties of hydrogen‐containing porous media. The transverse relaxation time cutoff (T2c) value is the crucial parameter for the quantitative analysis of NMR data. Currently, there is no universal method for the determination of the T2c in clayey soils. This study aimed to develop a laboratory method for determining the T2c of remoulded loess by the freezing point of loosely bound water. Malan loess, a kind of typical clayey silt, was used as test material. Based on the soil freezing characteristic, NMR measurements were performed on remoulded loess with different macro‐parameter controls during the cooling process to obtain the T2 spectrum at each target temperature. By analysing the variation of unfrozen water content with temperature reduction, the freezing point of loosely bound water and the T2c value within the freezing‐point range was determined. The freezing point of loosely bound water in remoulded loess is about −3 to −5°C and that of firmly bound water is less than −5°C. Accordingly, the T2c value of remoulded loess is determined to be 1.5–1.8 ms. The assessment of heating and cooling process and different methods for determining the T2c shows that the laboratory method by the freezing point is effective and reliable, and the T2c determined by statistical methods is worthy of further study and improvement. The saturated permeability of remoulded loess is evaluated according to the determined T2c, and two NMR‐based permeability equations can well reflect pore water distribution in remoulded loess, but to a certain extent, both equations ignore soil microstructure, pore connectivity and chemical effects of pore solution. The laboratory method by the freezing point and the determined T2c value of remoulded loess fill the gap of NMR measurement in loess analysis and are of great significance for low‐plastic clays and clay types.

Publisher

Wiley

Subject

Soil Science

Reference43 articles.

1. Applications of NMR logs and borehole images to the evaluation of laminated Deepwater reservoirs;Claverie M.;SPE ‐ Asia Pacific Oil and Gas Conference,2007

2. Using Soil Freezing Characteristics to Model Multi-Season Soil Water Dynamics

3. A critical assessment of the moist tamping technique;Frost J. D.;Geotechnical Testing Journal,2003

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3