Characterization and prediction of soil hydraulic and solute transport parameters using a random forest model

Author:

Ju Xinni12,She Dongli13ORCID,Huang Xuan3,Xia Yongqiu4ORCID,Gao Lei4ORCID

Affiliation:

1. Research Center of Soil and Water Conservation and Ecological Environment Chinese Academy of Sciences and Ministry of Education Yangling China

2. University of Chinese Academy of Sciences Beijing China

3. College of Agricultural Sciences and Engineering Hohai University Nanjing China

4. Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science Chinese Academy of Sciences Nanjing China

Abstract

AbstractTo effectively control nonpoint source pollution and predict its transport and load, understanding water and solute transport processes, patterns and mechanisms is essential. However, the measurement of water movement and solute transport parameters is usually a laborious and time‐consuming task. It is important to predict water movement and solute transport parameters from more readily available soil physical and chemical properties. In this study, a database of soil hydraulic and solute transport parameters containing information retrieved from 83 published studies on soil properties, land use, management measures, etc. was established to characterize and simulate soil water movement and solute transport processes. Our results showed that the soil particle composition was closely related to all soil hydraulic and solute transport parameters. As the soil texture changed from sand to clay, the soil residual water content (θr) obviously increased. The soil porosity was significantly positively correlated with θr, saturated water content (θs), van Genuchten parameter α, dispersity (λ) and retardation factor (R) and negatively correlated with van Genuchten parameter n (p < 0.01). The use of random forest models allowed the prediction of soil hydraulic and solute transport parameters by inputting common or even incomplete soil property parameters. The bulk density and particle composition jointly contributed 66% to the prediction of the soil hydraulic parameters and 44% to the prediction of the solute transport parameters. The pH exerted a notable impact on the solute transport parameters, especially dispersion coefficient (D), λ and R. The results may be useful in providing data support and facilitating the development of watershed nonpoint source pollution models.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3