Organic carbon enables the biotic engineering of beneficial soil structure in Profundihumic and Haplic Ferralsols

Author:

Martinez Pedro12ORCID,Lybrand Rebecca A.3,McFarlane Karis J.4,Dor Maoz5,Gallo Adrian C.1,Mayedo Amy1,Marini Fillipe6,Vidal‐Torrado Pablo7,Kleber Markus1

Affiliation:

1. Department of Crop and Soil Science Oregon State University Corvallis Oregon USA

2. New Mexico State University Las Cruces New Mexico USA

3. Department of Land, Air, and Water Resources University of California‐Davis Davis California USA

4. Lawrence Livermore National Laboratory Center for Accelerator Mass Spectrometry Livermore California USA

5. School of Chemical, Biological, and Environmental Engineering Oregon State University Corvallis Oregon USA

6. Department of Geosciences, Agroecology Graduate Program Federal University of Paraíba João Pessoa Brazil

7. Department of Soil Science, “Luiz de Queiroz” Agriculture College University of São Paulo Piracicaba Brazil

Abstract

AbstractWe investigated how organic matter may, directly and indirectly, modify the porosity of Ferralsols, that is, deeply weathered soils of the tropics and subtropics. Although empirical and anecdotal evidence suggests that organic matter accumulation may increase porosity, a mechanistic understanding of the processes underlying this beneficial effect is lacking, especially so for Ferralsols. To achieve our end, we leveraged the fact that the Profundihumic qualifier of Ferralsols (PF) is distinguished from Haplic Ferralsols (HF) by both a much larger average carbon content in the first 1 m of soil depth (19 kg C m−3 in PF vs. 10 kg C m−3 in HF) and a significantly lower bulk density (1.05 ± 0.08 kg L−1 in PF vs. 1.21 ± 0.05 kg L−1 in HF). Through exhaustive modelling of carbon – bulk density relationships, we demonstrate that the lower bulk density of PF cannot be satisfactorily explained by a simple dilution effect. Rather, we found that bulk density correlated with carbon content when combined with carbon: nitrogen ratio (r2 = 0.51), black carbon content (r2 = 0.75), and Δ14C (r2 = 0.81). Total pore space was greater in PF (61 ± 3%) than in HF (55 ± 2%), but x‐ray computed tomography revealed that pore space inside soil aggregates of 4–5 mm diameter does not vary between the studied Ferralsols. We further observed nearly twice as many roots and burrows in PF compared with HF. We thus infer that the mechanism responsible for the increase in porosity is most likely an enhancement of resource availability (e.g., energy, carbon, and nutrients) for the organisms (earthworms, ants, termites, etc.) that physically displace soil particles and promote soil aggregation. As a result of increased resource availability, soil organisms can create especially the mesoscale structural soil features necessary for unrestricted water flow and rapid gas exchange. This insight paves the way for the development of land management technologies to optimize the physical shape and capacity of the soil bioreactor.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Division of Earth Sciences

Publisher

Wiley

Subject

Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3