The elevational patterns and key drivers of soil microbial communities strongly depend on soil layer and season

Author:

Cao Rui1,Chang Chenhui2,Xu Mingzhen3,Wang Zhuang1,Wang Qin1,Tan Bo4,Li Han4,Wang Zhihui1,Hou Jianfeng1,Li Fei1,Li Xuqing1,Wang Dan1,Yang Wanqin1ORCID,Li Mai‐He567

Affiliation:

1. Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences Taizhou University Taizhou China

2. Department of Ecology, College of Urban and Environmental Science, Key Laboratory for Earth Surface Processes of the Ministry of Education Peking University Beijing China

3. Taizhou Forestry Technology Extension Station Taizhou China

4. Institute of Ecology and Forestry Sichuan Agricultural University Chengdu China

5. Forest Dynamics, Swiss Federal Institute for Forest Snow and Landscape Research WSL Birmensdorf Switzerland

6. Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences Northeast Normal University Changchun China

7. School of Life Science Hebei University Baoding China

Abstract

AbstractKnowledge about the elevational patterns of soil microbial biomass and communities can facilitate accurate prediction of the responses of soil biogeochemical processes to climate change. However, previous studies that have considered intra‐ and inter‐annual variations have reported inconsistent results on the one hand, and they have paid little attention to the effect of soil layer on the other hand. We, therefore, conducted a 4‐year in situ soil core incubation experiment along a 2431‐m elevational gradient across the dry valley shrubland, valley‐montane ecotone forest, subalpine coniferous forest, alpine coniferous forest, and alpine meadow in an ecologically fragile alpine‐gorge region on the eastern edge of the Qinghai‐Tibetan Plateau. Soil microbial biomass and community composition in the organic and mineral layers were measured using the phospholipid fatty acids (PLFA) method at five critical periods each year. Our results indicated that soil microbial biomass in the organic layer was the highest in the subalpine coniferous forest, followed by the alpine meadow, alpine coniferous forest, and valley‐montane ecotone forest. In contrast, soil microbial biomass in the mineral layer was significantly higher in the alpine meadow than in the other sites. Soil microbial biomass exhibited differential seasonal fluctuations at different elevations, resulting in their elevational patterns being strongly intra‐annual and inter‐annual dependent. Our results revealed that elevation and seasonality significantly affected soil microbial communities. Seasonality had a more substantial effect than elevation on soil microbial communities during the first 3 years of incubation, whereas the relative importance of seasonal and elevational effects on microbial communities was reversed in the organic layer with incubation time. These results are mainly attributed to the magnitude and direction of effect of environmental variables on soil microbial biomass and communities vary with elevation, soil layer, and sampling time. Briefly, the elevational patterns and dominant factors of soil microbial biomass and communities have intense soil layer and temporal specificity, implying that differential responses of soil biochemical processes to climate change might be observed at different elevations.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3