Enhancement of energy storage performance in lead‐free relaxor ferroelectric ceramics via band structure engineering

Author:

Zhang Ying12,Zhang Ganrong2,Li Ang2,Zhang Jia‐Han3ORCID,Zheng Yingqiu12,Luo Guoqiang12ORCID,Tu Rong12,Zhang Jian2,Shen Qiang2,Zhang Lianmeng12

Affiliation:

1. Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory Chaozhou China

2. State Key Lab of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan China

3. Collaborative Innovation Center of Advanced Microstructures School of Electronic Science and Engineering Nanjing University Nanjing China

Abstract

AbstractDielectric capacitors with excellent energy storage performance (ESP) are in great demand in the power electronics industry due to their high power density. For the dielectric materials, the dielectric breakdown strength (BDS) is the key factor to improve ESP, which is the focus and bottleneck of current research, especially in the relaxor ferroelectric (RFE) materials with already low residual polarization (Pr). Here, we stimulate the ESP of the BaTiO3 (BT)‐based RFE ceramics by band structure engineering. The Ta element is selected to enhance the band gap of doped ceramics, occupying Ti‐site in supercell of BT and optimizing the bonds length of Ti‐O bond to increase the energy band of Ti 3d states. In this way, the band gap of the doped ceramics is efficiently enhanced from 1.8 eV to 2.22 eV resulting in the large BDS. Prospectively, combined with the advantage of fine grain size, the highest recoverable energy storage density (Wrec) of 2.85 J/cm3 is obtained at 350 kV/cm and the ultra‐high energy efficiency (η) of 95.26% is found at 200 kV/cm. Our work reveals the relationship between elements doping in B‐site and band structure, being expected to benefit for designing energy storage materials.

Publisher

Wiley

Subject

Materials Chemistry,Ceramics and Composites

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3