Effect of DC and AC electric fields on crack healing behavior in 8 mol% yttria‐stabilized cubic zirconia polycrystal

Author:

Kawabata Shintaro1,Takahashi Shoma12,Nambu Kohta13ORCID,Morita Koji123ORCID

Affiliation:

1. Research Center for Electronic and Optical Materials National Institute for Materials Science Tsukuba Ibaraki Japan

2. Department of Advanced Materials Science and Engineering Chiba Institute of Technology Narashino Chiba Japan

3. Department of Materials Science and Engineering Kyushu University Nishi‐ku Fukuoka Japan

Abstract

AbstractThe effect of the flash event (FE) on microcrack healing behavior in 8 mol% yttria‐stabilized zirconia was examined at healing temperatures of 1040 and 1230°C under the direct and alternating (DC and AC) electric fields. The crack healing behavior changed depending on the factors of the electric field, healing temperature, and crack length. Although the crack healing proceeded with the temperature, the healing rate increased with the crack length, suggesting that the external energy stored as crack surface energy would provide a driving force for the crack healing. Although the crack healing occurs even under the static annealing without the electric field, the healing rate was accelerated by FE significantly more under the AC field than under the DC field. The microcracks with a length of ≈20 μm were fully healed at 1230°C only for 10 min by the FE treatment under the AC field, and the flash healing behavior was four times faster than that of the static annealing. These results suggest that the enhanced healing behavior cannot be explained only by thermal effects, and the accelerated diffusivity caused additionally by nonthermal effect under FE might contribute to the enhanced healing behavior, especially in the AC electric field.

Publisher

Wiley

Subject

Materials Chemistry,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3