On the flash sintering behavior of Li:ZnO—Evidence of electrode asymmetry driven by electrochemical reactions

Author:

Parameswaran Anand Mohan1,Amal Kaitheri Nanda Kumar1ORCID

Affiliation:

1. Department of Sciences, Amrita School of Physical Sciences Amrita Vishwa Vidyapeetham Coimbatore India

Abstract

AbstractThe synthesis, subsequent flash sintering (FS) characteristics and microstructures of pure and Li‐incorporated ZnO powders are reported. At low concentrations, Li is a substitutional occupant in ZnO but becomes an amphoteric dopant (substitutional and interstitial occupant) at higher concentrations inferred from a contraction reversal of the unit cell volume. Increasing Li reduces the average flash temperature of ZnO modestly by 15°C, and a doubling of the linear shrinkage. A discernible color smear (yellow–white–dark) stretching from the anode to cathode imputable to strong electromigration is also observed. Microanalyses of the electrode regions establish clear evidence of electrochemical (EC) lithiation into ZnO and the formation of Li–Zn compounds not observed in conventional sintering (CS). Interestingly, in contrast to CS, the addition of Li enhances coarsening during FS, suggestive of a dissolution–reprecipitation process concurrent with the EC lithiation process. Evidence for considerable (local) yet tangible temperature, chemical and microstructural asymmetry among electrodes driven by EC reactions is presented. Probable mechanisms, leading to these observations, are discussed.

Publisher

Wiley

Subject

Materials Chemistry,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3